
$\mathbf{2 - 3 1}$. Does the table below appear to represent a function? If so, write an equation using function notation that represents the table. If not, explain why it cannot represent a function.

Figure \# \boldsymbol{x}	0	1	2	3	4
\# of tiles \boldsymbol{y}	4	8	12	16	20

2-32. When Yoshi graphed the lines $y=2 x+3$ and $y=2 x-2$, she got the graph shown at right.
a. One of the lines at right matches the equation $y=2 x+3$, and the other matches $y=2 x-2$. Which line matches which equation?
b. Yoshi wants to add the line $y=2 x+1$ to her graph. Predict where it would lie and sketch a graph to show its position. Justify your prediction.

c. Where would the line $y=-2 x+1$ lie? Again, justify your prediction and add the graph of this line to your graph from part (b).

2-33. On graph paper, graph a line with y-intercept $(0,-4)$ and x-intercept $(3,0)$. Find the equation of the line.

2-34. Draw Figures 1, 2, and 3 for a tile pattern that could be described by $y=-3 x+10$.

2-35. What number is not part of the domain of $f(x)=\frac{3}{x+5}$? How can you tell?

