3-97. Make an x,y table for the equations and then graph the lines y = -4x + 3 and y = x - 7 on the same set of axes. Then find their point of intersection.

х	У	х	У

3-100. Find each of the following products by drawing and labeling a generic rectangle or by using the Distributive Property.

a.
$$5x(x - 6)$$

b.
$$-9y(6 - 3y)$$

c.
$$(x + 2) (x + 3)$$

d.
$$(x + 1)(x + 5)$$

3-102. Solve each of the following equations. Be sure to show your work carefully and check your answers.

a.
$$2(3x-4)=22$$

b.
$$12x - 30 = -(x + 4)$$

c.
$$2 - y - 4 = 3y$$

d.
$$3 + 4x + 4 = 159$$

3-108. Complete the table and find the equation of the line (y = Mx + B). Use the slope (M) and the y-intercept (B) as shown in the table.

Х	-1	0	1	2	3
у	-8	-5		1	

3-112. Simplify using only positive exponents.

a.
$$(3x^2y)(5x)$$

c.
$$\frac{18x^5y^3}{9x^7y}$$

b.
$$(4x^2y^3)(3x^5y^2)$$

d.
$$(2x)^0$$