

Decimal Degrees, to Degrees, Minutes, and Seconds

Convert 56.612° to degrees, minutes, and seconds.

- Your degrees will be the whole number, so in this case, we have 56°.
- Use a conversion to convert .612 to minutes:

$$\frac{.612 \deg rees}{1} \cdot \frac{60 \min utes}{1 \deg ree(s)}$$
 cancel units!

- Multiply across to determine the number of minutes: $.612 \times .60 = 36.72$
- The whole number becomes your minutes. So now you have 56°36' and .72 of a minute, which still needs to be converted to seconds.
- Write another conversion to convert .72 to seconds:

$$\frac{.72 \min utes}{1} \cdot \frac{.60 \sec onds}{1 \min ute(s)}$$
 cancel units!

- Multiply across to determine the number of seconds: .Round to the nearest whole number. 72 x 60 seconds = 43 seconds
- Put all the pieces together and you have 56°36'43"

Degrees, Minutes, and Seconds to Decimal Degrees

Convert 56°36'43''to decimal degrees.

- The degree measure becomes your whole number in your decimal degrees.
- Now you have to convert 36' to a decimal. Do the conversion:

	~			
36:	min <i>utes</i>	1 deg ree	005001	المائسيد
	1	60 min utes	cancel	umis:

- Multiply across and you will end up with a fraction: $\frac{36 \deg rees}{60} = .6^{\circ}$
- Now you have to convert 43" to decimal degrees. Do a conversion:

$$\frac{43\sec onds}{1} \cdot \frac{1\deg ree}{3600\sec onds}$$
 cancel units!

- Again, you will have a fraction, $\frac{43 \deg rees}{1} = .012^{\circ}$ (which is rounded to the nearest thousandth)
- Now add the whole number and the decimals to determine your decimal degrees. $56^{\circ} + .6^{\circ} + .012^{\circ} = 56.612^{\circ}$

1 \ /4	5.245°					•		1	
1.) 4	J.2 4 J				- •		•		
					. •				
2) 0	4.252°		÷						
2.) 9	T. L. J L	·							
				•					
3)1	00.9°								
5.,, 1	00.9								
					-				
411	78.002°			-			,		
7., 1	70.002								
Con	vert the follo	owing to decimal	degrees						
•		ming to decimal	ucsi cosi	=					
5.) 4	5°59'12"							+	1
								(
c > 4	E01015(II								
6.) 4	5°12'56"	-							
				-					
	400 4 510 !!			-					
a	71 1 1 2 7 K F J B								
7.) 1	40°45'3"								
					-				
				·					
		·							