2-54. Graph the line $y=\frac{3}{4} x$ on graph paper.

1. Draw a slope triangle.
2. Rotate your slope triangle $90^{\circ}$ around the origin to get a new slope triangle. What is the new slope?
3. Find the equation of a line perpendicular to $y=\frac{4}{3} x$.

- 2-63. Examine the triangle below.


1. If $m \measuredangle D=48^{\circ}$ and $m \measuredangle F=117^{\circ}$, then what is $m \measuredangle E$ ?
2. Solve for $x$ if $m \measuredangle D=4 x+2^{\circ}, m \measuredangle F=7 x-8^{\circ}$, and $m \measuredangle E=4 x+6^{\circ}$. Then find $m \measuredangle D$.
3. If $m \measuredangle D=m \measuredangle F=m \measuredangle E$, what type of triangle is $\triangle F E D$ ?

- 2-64. Plot $\triangle A B C$ on graph paper if $A(6,3), B(2,1)$, and $C(5,7)$.

1. $\triangle A B C$ is rotated about the origin $180^{\circ}$ to become $\triangle A^{\prime} B^{\prime} C^{\prime}$. Name the coordinates of $A^{\prime}, B^{\prime}$, and $C^{\prime}$.
2. This time $\triangle A B C$ is rotated $180^{\circ}$ about point $C$ to form $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. Name the coordinates of $B^{\prime \prime}$.
3. If $\triangle A B C$ is rotated $90^{\circ}$ clockwise $(U)$ about the origin to form $\Delta A^{\prime \prime \prime} B^{\prime \prime \prime} C^{\prime \prime \prime}$, what are the coordinates of point $A^{\prime \prime \prime}$ ?

- 2-65. Examine the graph below.


1. Find the equation of the line.
2. Is the line $y=\frac{3}{2} x+1$ perpendicular to this line? How do you know?
