- **2-54.** Graph the line $y = \frac{3}{4}x$ on graph paper.
 - 1. Draw a slope triangle.
 - 2. Rotate your slope triangle 90° around the origin to get a new slope triangle. What is the new slope?
 - 3. Find the equation of a line perpendicular to $y = \frac{4}{3}x$.

• **2-63. Examine** the triangle below.

- 1. If $m \stackrel{\checkmark}{=} D = 48^{\circ}$ and $m \stackrel{\checkmark}{=} F = 117^{\circ}$, then what is $m \stackrel{\checkmark}{=} E$?
- 2. Solve for x if $m \angle D = 4x + 2^{\circ}$, $m \angle F = 7x 8^{\circ}$, and $m \angle E = 4x + 6^{\circ}$. Then find $m \angle D$.
- 3. If $m \leq D = m \leq F = m \leq E$, what type of triangle is ΔFED ?
- **2-64.** Plot $\triangle ABC$ on graph paper if A (6, 3), B (2, 1), and C (5, 7).
 - 1. $\triangle ABC$ is rotated about the origin 180° to become $\triangle A'B'C'$. Name the coordinates of A', B', and C'.
 - 2. This time $\triangle ABC$ is rotated 180° about point C to form $\triangle A''B''C''$. Name the coordinates of B''.
 - 3. If $\triangle ABC$ is rotated 90° clockwise (\bigcirc) about the origin to form $\triangle A'''B'''C'''$, what are the coordinates of point A'''?

• **2-65. Examine** the graph below.

- 1. Find the equation of the line.
- 2. Is the line $y = \frac{3}{2}x + 1$ perpendicular to this line? How do you know?