

CL 3-113. Two brothers, Martin and Horace are in their back yard. Horace is taking down a brick wall on one side of the yard while Martin is building a brick wall on the other side. Martin starts with zero bricks in his wall, but can lay 2 bricks every minute. Meanwhile, Horace's wall is made up of 200 bricks and he takes down 3 bricks each minute.

Write an equation in $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form for each brother.

CL 3-114. Rewrite each of these products as a sum.
a. $6 x(2 x+y-5)$
b. $\left(2 x^{2}-11\right)\left(x^{2}+4\right)$
c. $(7 x)(2 x y)$
d. $(x-2)(3+y)$

CL 3-115. Find the missing areas and dimensions for each generic rectangle below. Then write each area as a sum and as a product.
a.

b.

CL 3-118. Simplify each expression.
a. $\left(x^{3}\right)^{2}$
b. $\frac{14 a^{3} b^{2}}{21 a^{4} b}$
b.
c. $2 m^{3} \cdot 3 m$
c. $5 x y^{3} \cdot 3 x^{2} y^{5}$
d. x^{-2}
e. $\left(3 x^{2}\right)^{0}$

CL 3-119. Determine the equation of each line from the given representation.
a.

b. A line with a slope $-\frac{2}{3}$ and passes through the point $(-3,4)$.
c.

x	-4	-3	-2	-1
y	-11	-9	-7	-5

3-85. Complete each of the Diamond Problems below. The pattern used in the Diamond Problems is shown at right.
a.

b.

c.

d.
.

